ASC-TR-93-5008

AN INTRODUCTION TO STRUCTURAL
MODELS

AD-A26
!MWWVW”WTW

JOE BATMAN SOFTWARE ENGINEERING INSTITUTE
LARRY HOWARD SOFTWARE ENGINEERING INSTITUTE
BILL SCHELKER AERONAUTICAL SYSTEMS CTR

SOFTWARE ENGINEERING INSTITUTE
CARNEGIE~MELLON UNIVERSITY
PITTSBURGH, PA 15213

AUGUST 1992

FINAL REPORT FOR JUNE 1986 TO AUGUST 1992

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

DTIC .

ELECTE
AUG 131993

A

' ‘;: 93"
4 NMWWMPHMW"

SYSTEMS ENGINEERING PROCESS DIVISION
AERONAUTICAL SYSTEMS CENTER

AIR FORCE MATERIEL COMMAND

WRIGHT PATTERSON AFB OH 45433-7126

NOTICE

When Government drawings, specifications, or other data are used for
anv purpose other than in connection with a definitely Government-related
procurement, the United States Government incurs no responsibilitv or anwv
obligation whatsoever. The fact that the government mav have formulated or
in any way supplied the said drawings, specifications, or other data, is not
to be regarded by implication, or otherwise in anv manner construed, as
licensing the holder, or anv other person or corporation; or as conveving
any rights or permission to manufacture, use, or sell any patented invention
that may in any wav be related thereto,

This report is releasable to the National Technical Information Service
{(NTIS). At NTIS, it will be available to the general public, including
foreign nations.

This technical repcrt has been reviewed and 1is approved for publica-

tion.
e Y " . " ﬂ)
<y ey LD Deargin
"/ZL \ / ,/'ﬂ_,‘ .
JEFFREY! (. VALITON, Maj, USAF JAMES D. BASINGER
Procram Manager Chief, Tech Development and Insertion
Svstems Engineering Process Division Svstems Enginecerire Process Division
Accesinn ror
NTIS CrAanl ‘,
Tie Tag T
Uotanian et
JuabhCcat
S
oo o -
“JAMES J. O'CONNELL Avatioiiiy fn e ’"*
Chief, Svstems Engineering Process Division r——-——z T ey
.] ‘ c. VAl s oF
Training Svstems Program Office Dist Spevial
Dol Ol e TV A’{

If your address has changed, if you wish to be removed from our mailing
list, or if the addressee is no longer emploved by vour organization please
notifyv ASC/YTED » WPAFB, OH 45433-71]11 to help us maintain a current
mailing list.

Copies of this report should not be returned unless return is required by
securitv considerations, contractual obligations, or notice on a specific
document.

IeZT ol TATIOM PAGE |
i
T T TR T e e ey “_‘M'TN . 30TERINT OTYDE AT DATLL D
AUG 1992 FINAL 06/86 m>08/92
s AN INTRODUCTION TO "STRUCTURAL T -
MODELS c F19628 90 C-0003
. PE 64227
i PR 2325
S, A

JOE BATMAN SOFTWARE ENGINEERING INSTITUTE WU
LARRY HOWARD SOFTWARE ENGINEERING INSTITUTE
BILL SCHELKER AERONAUTICAL SYSTEMS CTR

PO P —_— et o s

B TSI T Pari
LR ILS) 3. PLRAEST ys [
RITo T N TR

SOFTWARE ENGINEERING INSTITUTE
CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PA 15213

i
T | |

: ‘) RDTRESES) PI0.50 T
SYSTEMS ENGINEERING PROCESS DIVISION 1 P P
AERONAUTICAL SY5TE:S CENTER ; ASC-TR-93-5008
AIR FORCE MATERIEL COMMAND :

WRIGHT PATTERSON AFB OH 45433-7126 ;

- - P B T ——— 1 —— " — T = o on

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS
UNLIMITED.

s " s e 8 2w e

THIS PAPER INTRODUCES STRUCTURAL MODELS FOR FLIGHT
STMULATORS TO TECHNICAL MANAGERS. IT GIVES THE RATIONALE
FOR USING STRUCTURAL MODELS, DEFINES STRUCTURAL MODELS, AND
DISCUSSES PRACTICES ASSOCIATED WITH THEIR USE. THE PAPER
PROVIDES AN EXAMPLE OF A STRUCTURAL MODEL BASED ON THE MODEL
USED ON A NUMBER OF RECENT SIMULATOR ACQUISITIONS. THE
PAPER ALSO DISCUSSES WHAT ASC/YT EXPECTS IN PROPOSALS FOR
THE USE OF STRUCTURAL MODELS IN THE DEVELOPMENT OF TRAINING
SIMULATORS.

PARTITIONING o 30
INTENDED QUALITIES . o

A T
IR

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

Table of Contents

1 Introduction

2 Concepts of Structural Models
2.1 Partitioning Strategies and Software Structure
2.2 Coordination
2.3 Evaluation
2.3.1 Evaluation of the Structural Model
2.3.2 Evaluation of the System that Will Be Built
2.4 Application of a Structural Model
2.5 Summary

3 The Air Vehicle Structural Model
3.1 Paritioning Strategy
3.2 Coordination
3.3 Evaluation of the Air Vehicle Structural Model
3.4 Application of the Air Vehicle Structural Model
3.5 Summary

4 Structural Models in Proposals
4.1 Description of a Particular Structural Model
4.2 Evaluation of a Structural Model
4.3 Application of a Structural Model
4.4 Summary

Glossary - APPENDIX A

to

I~

[RENCRNc BEe IR N A I

—

11
12
14
16

17

18
18
19
20

22

Py

iii

List of Figures

Figure 2-1 Dividing and Conguering a Problem Through Partitioning
Figure 2-2 Different Structures for Solving the Same Problem

Figure 3-1 Structural Elements of the Air Vehicle Structural Model !

o W &

iv

FOREWORD

This paper is a technical deliverable by the Software Engineering Institute (SEI), Camegie Mellon
University, to the Training System Program Office, ASC/YT, Wright Patterson Air Force Base. in
support of an ASC/YT program to transition technology and use of structural models in training
simulators. Thc paper describes key concepts of structural models and contains gencral guidance for
technical proposals. Program specific details of proposal requirements are in the Instructions to

Offerors.

An Introduction to Structural Models

Abstract: This paper introduces structural modeis for flight simulators to
technical managers. It gives the rationale for using structural models, defines
structural models, and discusses practices associated with their use. The
paper provides an exampie of a structural modei based on the modei used on
a number of recent simulator acquisitions. The paper also discusses what
ASC/YT expects in proposals for the use of structural models in the
development of training simulators.

An Introduction to Structural Models

1 Introduction

This paper has been placed in the bidder's library to introduce structural models to technical
managers. It introduces key concepts and describes what ASC/YT expects to see in proposals
for the use of structural models in the development of flight simulators. ASC/YT intends to
follow this with two other activities:

1. Acquisition practices will be modified to accomodate the design issues ad-
dressed by structural models, both in the evaluation of proposals and the
management of acquisitions.

2. A guidebook for engineers will be written that will provide details on the most
successful structural models and the development practices associated with
them.

Structural models are a software engineering tool for the system engineering team. ASC/YT
began work on structural models in 1986, in response to a number of influences. The first was
a realization that as the scale and complexity of simulators increased, the traditional architec-
tures for flight simulators were reaching their limits. In particular, modifiability was becoming
increasingly difficult. At the same time, concurrency between the simulator and the aircraft be-
ing simulated was becoming increasingly important to ASC/YT. Also at the same time, Ada
and object-orlented notions were being investigated for their applicability to real-time flight
simulators. All of these factors contributed to the development and ongoing evolution of de-
signs that were responsive to the issues of increasing scale, concurrency, and an appropriate
use of Ada for real-time simulation.

Structural models have evolved through use on a number of recent simulator acquisitions in-
cluding the B-2 Weapon Systems Trainer, the C-17 Aircrew Training System, and the Special
Operations Forces Aircrew Training System programs. These programs have demonstrated
to ASC/YT that structural models provide a viable basis for describing, evaluating, and devel-
oping software for large, complicated flight simulators. Benefits that have resulted from the use
of structural models include:

¢ The ability to make system engineering decisions at an early stage in the
system’s evolution.

¢ The ability to evaluate the effects of these decisions early in the development
of a system.

¢ The ability to consistently enforce these decisions across large simulation
projects.

An Introduction to Structural Models

This paper introduces contractors to the key concepts of structui.. models. It does not advo-
cate the use of a particular structural model. There are two reasons why ASC/YT will not dic-
tate a particular structural model:

1. A single structural model is not sufficient for all aspects of a flight simulator.
Air vehicle systems, the instructor/operator station (10S), the tactical environ-
ment, and mission planning all represent different nroblems that require dit-
ferent structural models.

2. Structural models for air vehicle systems, which represent the most advanced
use of structural models, are still evolving. Each program has improved what

has been accomplished by previous programs, and ASC/YT expects
improvements to continue.

This paper does not contain enough detail to train a contractor to use structurai models. To
that end, ASC/YT is commissioning an engineering guidebook on structural models and de-
velopment practices. This paper also does not fully explore the relationship between structural
models and other software engineering technologies, such as tools and design methodolo-
gies. Please note, however, that structural models are fully consistent with the principles of
software engineering and do not represent an attempt to introduce a radical new technology
to the flight simulator community.

The body of this paper consists of two chapters on structural models and a chapter on propos-
als for their use.

Chapter 2 defines the term structural model and elaborates on the definition. it talks in general
terms about the relationship between structural models and software quality, and the applica-
tion of a structural model to a project.

Chapter 3 describes the structural model used in a number of recent simulator acquisitions, a
structural model that is resgponsive to certain quality goals and is characterized by certain de-
velopment practices.

Chapter 4 discusses what ASC/YT expects of proposals for the use of structural models in the
development of flight simulators.

In addition, we provide a glossary, Appendix A, which defines terms used in this paper. Terms
that appear in the glossary are printed in boldface when we first introduce them in the text.

An Introduction to Structural Modsls

2 Concepts of Structural Models

A structural model is a pattern for specifying and implementing software system functionality.
It reflects system engineering decisions about partitioning and coordination. A structural model
allows critical decisions about system design to be evaluated early in development and allows
the decisions to be applied consistently across the entire software system.

In the remainder of this chapter, we elaborate on this definition. Sections 2.1 and 2.2 explain
what we mean by partitioning and coordination and discuss the role of system engineering in
making decisions about these issues. Section 2.3 discusses evaluation of a structural model,
and Section 2.4 discusses how to apply a structural model consistently on a project. Because
structural models have thus far been primarily used on simulation of the air vehicle portion of
flight simulators, we draw the discussions and examples from that domain.

2.1 Partitioning Strategies and Software Structure

Problems such as simulating the air vehicle of a modern aircraft are often too large and com-
plex to be understood and solved as a whole. For this reason, engineers partition, or decom-
pose, such problems into smailer subproblems that are more easily understood and solved.
The solutions to these smaller subproblems together ccnstitute a solution to the overall prob-
lem. This process is depicted in Figure 2-1.

The problem partitioned into subproblems

Solutions to the subproblems

Figure 2-1: Dividing and Conquering a Problem Through Partitioning

@
o B &

Partitioning is the decomposition of large software problems into smaller subproblems and
the allocation of these subproblems to software components that will solve them. This decom-
position establishes interfaces between the software components and creates the need to co-
ordinate the computations of the software components in order to form the overall solution.

Partitioning involves making decisions about how the problem will be decomposed and allo-
cated to software components. Partitioning strategies guide this decision making. In any
system, several partitioning strategies are possible. For simulations of air vehicles, partitioning
could be based on:

An Introduction to Structural Models

* Training tasks

* Pilot tasks

¢ Air vehicle components

* The closing of feedback loops.

In the next chapter, we discuss a structural model based on a partitioning strategy of capturing
individual air vehicle components in individual software components.

Different partitioning strategies lead to different software structures. This is depicted in
Figure 2-2.

"Probliem"”

N

\ ut] |u2] |us
/ / (U4

T1
- us
T2
S1]|s2]is3}]is4 T3 T4 Sl | Structure C
|
Structure A s 6
Structure B

Figure 2-2: Different Structures for Solving the Same Problem

The alternative software structures in Figure 2-2 all have the same functionality. How, then, do
we determine which software structure is better? The answer depends in large part on the non-
functional qualities or attributes that the system is intended to exhibit. Qualities such as mod-
ifiability, efficiency, and reusability are non-functional in the sense that they are not part of a
system’s functionality; nevertheless, they are capabilities that are important to the system. In
this paper, we will refer to these qualities as intended qualities of the system. A few dominant
qualities tend to guide decision making in the design of large software systems. These quali-
ties may be realized more easily through one software structure (and, therefore, as a resuit of
one partitioning strategy) than another.

System engineers partition system requirements into software components. Decisions about
which functions are partitioned into which elements are guided by a partitioning strategy,
experience, and consideration of the intended qualities that the system is to exhibit. The
process of partitioning is iterative. Each attempt at partitioning produces a hypothesis that is
evaluated. An initial partitioning is often unacceptable, leading to an alternative partitioning
that also is evaluated. Eventually, the process leads to an acceptable partitioning.

An Introduction to Structural Models

The result of this partitioning is a software structure that specifies the functionality of each soft-
ware component. But system engineering considerations remain. We have discussed decom-
position (partitioning). We now turn our attention to recomposition, or how the individual
software components will be integrated to form the complete solution. We will look at how the
software components work together to satisfy the overali functional requirements.

2.2 Coordination

In the previo.:s secticn, we described how total system functionality is partitioned into software
components accurding to some strategy. Once functionality has been partitioned, issues of co-
ordination must be considered. The result of this consideration is a collection of structural el-
ements that embody decisions about how to coordinate the behavior of the individual
components to satisfy the overall system functional requirements. We will now elaborate on
the main issucs of coordination—communication and activation.

Communilcatlon refers to the paths and mechanisms by which structural elements share the
results of their computations. For example, elements may communicate by way of parameter
passing or shared memory. The communication mechanisms that affect each structural ele-
ment must be explicitly stated. Also, the other structural elements with which each structural
element directly communicates and the direction of communication must be made explicit.
Given two structural elements, A and B, it must be possible to determine that A furnishes data
that B uses, B furnishes data that A uses, or neither.

Activation refers to the mechanisms by which the structural elements are made to cooperate
to realize overall system functionality. This includes consideration of:

* How the various elements are scheduled to perform their computations.

* How they are notified of events (for example, malfunction setting/clearing,
simulator mode changes, etc.).

¢ How the computations on one processor are coordinated with computations
on another processor when more than one processor is used.

Decisions about coordination mechanisms affect both the specification and the implementa-
tion of software developed using a structural model. The coordination mechanisms dictate
what aspects of system behavior must be specified for each partitioned component. For ex-
ample, if there is @ mechanism for setting malfunctions, then the specification for each sub-
system and component must describe malfunction behavior. If the overal! system is to function
in freeze mode, then the freeze mode behavior of each subsystem must be specified.

The coordination mechanisms provide a means of genera‘zing about the use of programming
language features across partitions. For example, system engineers must decide how to im-
plement the structura: element that allows activation of the update mode functionality of each
subsystem. The system engineering decisions about the form the structural elements take in
the implementation resolves the tradeoff between conflicting goals such as the benefits of en-
capsulation and the overhead of communicating hidden information. For example, a decision

An Introduction to Structural Models

to package components as private Ada types requires mechanisms to access component
state. The system engineer's goal, therefore, is to arrive at mutually consistent coordination
decisions that are also consistent with the goals of the partitioning strategy.

To achieve this goal, the engineer must generalize. The air vehicle simulation for a modern
aircraft can be partitioned into 200 or more subsystems, and each subsystem can be further
decomposed into one or more components, which can themselves be further decomposed.
But the system engineer need not independently hypothesize and evaluate coordination deci-
sions for each of the many subsystems. Instead, the system engineer can hypothesize a set
of decisions for one subsystem, regardless of the specific functionality performed by the sub-
system. If the decisions appear plausible, the system engineer can imagine a “complete sys-
tem” in which all the subsystems are packaged identically. The same coordination
mechanisms can then be used, regardless of the specific functionality performed by each sub-
system. This complete system is then the object of evaluation.

The system engineer repeats this process of generating and evaluating hypotheses until an
acceptable set of decisions about coordination is reached. Structural model is the name given
to this acceptable set of decisions. Structural refers to the fact that the system engineer is con-
cerned with a software structure that describes how components are activated and how they
communicate. Model, in this context, refers to two facts:

1. To make decisions about partitioning and coordination for one subsystem is
to make those decisions for all subsystems.

2. The structural model is a model of the system that is to be built. Decisions
about structural elements in particular allow one to reason about the
structural model as though it were the eventual software system itself.

Thus, a structural model retiects system engineering decisions about partitioning and coordi-
nation. A structural model allows early evaluation of the system that is to be built and provides
for the consistent specification and implementation of air vehicle functionality. These are the
subjects of the next two sections.

2.3 Evaluation

A structural model is a model of the system that is to be built. As such, it can be evaluated in
two ways:

1. How well it represents the system to be built.

2. How well the system to be built will satisfy the required functionality and the
intended qualities.

In this section, we discuss both of these types of evaluation.

An Introduction to Structural Models

2.3.1 Evaluation of the Structural Model

The purpose of a structuiai model is to convey information about the system to be built. The
following are criteria for how well it achieves this purpose:

¢ Does itinclude an explicit statement of the partitioning strategy? The
partitioning strategy used at the various levels of the structural model must
be made explicit.

* /s the software structure suitable for evaluation? The ability to evaluate a
proposed software structure depends on the number of different structural
elements whose interactions must be analyzed. This number should be smali
enough that the interactions of the structural elements can be evaluated.

¢ |s the software structure a suitable guide for system development? The
structure must be suitable for elaboration into a system that computes the
required functionalities and has the intended qualities.

® Are the coordination mechanisms clearly delineated and non-redundant?
¢ Can the final system be consistently rendered from the structural model?

2.3.2 Evaluation of the System that Will Be Built

One of the key benefits of using a structural model is that it enables the system that will be
built from it to be evaluated at an early stage in the system’s development. A system can be
evaluated with respect to:

¢ Functionality
¢ Intended qualities

When examining system functionality, it is useful to distinguish between two broad categories
of simulation requirements:

1. Requirements to simulate aircraft systems and effects, such as radar and
ground effects.

2. Requirements that span the simulation of individual aircraft systems, such as
the ability to insert malfunctions, to record and playback segments of a
training mission, to reconfigure the training mission, and to initialize to a
particular training mission.

A structural model must permit all such requirements to be satisfied and must allow the simu-
lator to operate in all required modes. Further, by examining the structural elements (the re-
sults of the partitioning) and the coordination mechanisms that have been established, it
should be evident from the structural mode! exactly how these requirements will be satisfied
in the final system.

Because a few dominant intended qualities often guide decision making in the design of large
software systems, it is important for these qualities to be made explicit from the outset of de-
sign. Evaluation of a structural model with respect to the system’s intended qualities can be
difficult because d.rect measurement is seldom possible, particularly during early

An Introduction to Structural Models

development. Nevertheless, a structural model should make it possible early in development
to envision a complete software system, built from the structural elements, that employs the
specified coordination mechanisms. It should then be possible to reflect on specific intended
qualities and judge the responsiveness of the structural model. For example, if concurrency
between simuiator and aircraft is a goal, one can test the responsiveness of a structural model
to some anticipated changes in the aircraft being simulated. Such tests can reveal weakness-
es in the partitioning strategy or coordination mechanisms that limit flexibility.

2.4 Application of a Structural Model

A structural model reflects decisions about partitioning and coordination mechanisms. After
the system engineer has made these decisions and analyzed their appropriateness, the goal
in applying a structural model on a project is to see that those decisions are adhered to con-
sistently. Consistent use of the structural model must be explicitly and rigorously enforced,
particularly in large simulation projects whose project teams are geographically and organiza-
tionally distributed.

There are two aspects of consistency in applying a structural model:

1. Consistent use of the structural elements by the analysts.

2. Consistent transformations between the specification and the
implementation.

To achieve consistent use of the structural elements, system engineers must be sure that the
partitioning strategy is clearly and explicitly stated. The analysts responsible for the specific
subsystems must understand the partitioning strategy and must understand how the elements
are expected to coordinate with other elements.

Consistent transformations can be achieved through the use of speclfication forms and
code templates. Specification forms can be used by simulation analysts to specify how indi-
vidual subsystems will be simulated in terms of the structural model. That is, a specification
form can constrain the simulation analyst to express solutions to simulation problems in terms
of the coordination mechanisms contained in the structural model.

Code templates can be used to ensure the use of consistent coordination mechanisms. The
relationship between a specification form and a set of code templates is a straightforward map-
ping. The specification form and the code templates refer to the same structural elements and
coordination mechanisms. Therefore, the implementation of a specification that calls for the
use of structural element X would include instantiation of the code template for structural ele-
ment X.

Consistent application of a structural model can lead to certain development efficiencies and
can contribute to predictability with respect to computer and human resources. The

efficiencies result in large part from reuse of the design decisions reflected in the structural
model. Important decisions about partitioning and coordination mechanisms are made once

An Introduction to Structural Models

and are reflected in the specification forms that simulation analysts use. Thus, rather than de-
ferring coordination decisions and making them repetitively for different subsystems, simula-
tion analysts make the decisions once and use these decisions consistently throughout the
system. A structural model also offers the potential for reuse of software structures from
project to project.

Predictability results from the consistent application of the structural model. In the application
of a structural model, many simulation analysts repeatedly apply the same structural elements
and coordination mechanisms to the simulation of many different subsystems. Therefore, the
lessons learned about expenditure of effort and use of computer resources while developing
one subsystem can be applied to the development of subsequent subsystems.

2.5 Summary

A structural model is a high-level software design that explicitly reflects decisions about parti-
tioning and coordination. When these decisions are made early in the development process.
they enable solutions to the problems of partitioning and coordination to be made once and
applied uniformly throughout the entire system.

Since many possible decisions about partitioning and coordination are possible, many differ-
ent structural models for flight simulators are possible. The most appropriate structural model
in a particular context is the one that is:

¢ Mapped most easily to required system functionality.
* Most able to provide intended qualities.
¢ Of acceptable cost.

Thus, because the functionality delivered by an instructor/operator station (I0S) is significantly
different from that delivered by an air vehicle simulation, a structural model for I0S software
may be different from a structural model for air vehicle simulation software. Further, structural
model “goodness” is always relative to functional requirements and intended qualities. When
certain qualities are emphasized over others, one structural model is more suitable than oth-
ers.

The most significant benefits of a structural modei come from its consistent application on a
project. Consistent use of a structural model becomes a greater challenge as development
teams grow larger and more geographically or organizationally distributed. Specification forms
and code templates for simulation analysts offer one way of enforcing consistent use of a
structural model. Consistency leads to efficiency in the reuse of design decisions and predict-
ability with respect to the use of human and computer resources.

An Introduction to Structural Models

10

3 The Air Vehicle Structural Model

Traditional flight simulators emphasized computer efficlency. The qualities required by the
simulators of the past, however, are ditferent from the qualities required by the simulators of
today. Increases in available computing power and aircraft complexity have led to a gradual
shift in emphasis away from computer efficiency alone toward a more ambitious set of goals
that includes modifiability and scalability in addition to efficiency. The actions that ASC/YT is
taking to institutionalize structural models (see page 2) result from the conviction that modifi-
ability and scalability are important qualities for modern-day flight simulators.

Modifiability is the ability to change software components in a simulation easily. Modifiability
is important because of the need for concurrency between the simulator and the aircraft being
simulated. Scalability is the ability of a software system to accommodate changes in scale.
Scalability is important because, as aircraft become increasingly sophisticated, the size of the
simulators being built, in terms of lines of code and number of aircraft subsystems being sim-
ulated, is increasing.

In this chapter, we present an air vehicle structural model that is the product of an emphasis
on modifiability and scalability as well as efficiency. The essential structural elements of this
structural model are depicted in Figure 3-1. In the remainder of this chapter, we will elaborate
on the partitioning strategy and coordination and communication mechanisms reflected in the
structural elements. We will then evaluate the air vehicle structural model and discuss several
aspects of its use.

3.1 Partitioning Strategy

The air vehicle structural model is based on an object-oriented partitioning strategy in which
aircraft components form the basis of the software structure. Aircraft systems are decomposed
into subsystems, and subsystems are decomposed into a collection of objects that corre-
spond to real-world aircraft components like reservoirs, motor pumps, relief valves, etc. The
purpose of an object is to simulate the behavior of an individual aircraft component. When de-
composing a subsystem into objects, fidelity and training requirements play a large role in de-
termining which objects to include in the simulation of each specific subsystem.

Systems that are unigque to the simulation, such as aerodynamics, equations of motion, etc.,
are also decomposed into subsystems and objects in the same manner as aircraft systems.
Requirements for operational modes and other training requirements—run, freeze, mission
initialization, malfunctions—are allocated to subsystems and objects. This is consistent with
the overall object-oriented philosophy in which objects encapsulate everything there is to
know about a real-world component and provide operations, or methods, for making the ob-
jects behave in a particular way. For example, the requirement to initialize a mission is allocat-
ed across all subsystems and components; all objects are responsible for initializing
themselves.

An Introduction to Structural Models

i1

Ordered Lists

Event
Mode Event Queue
—®| Sequencer |® — —| Handler |<@—{1 [| | }a—

N\ /
N i
\ / Subsystem N
\
R / ...
N\
4 i Subsystem 1
L ————
Controller -1 Export Area
Aperiodic Periodic
Operations Operations
nitiafize inputs from
other subsystem
[Process_Malfunction] export areas

Figure 3-1: Structural Elements of the Alr Vehicle Structural Model

3.2 Coordination

All objects, independent of the aircraft component they simulate, are consistently realized in
software as Ada packages with private internal states and an identical set of procedures that
operate on the objects. Operations on objects fall into two categories: those that are performed

periodically (such as update) and those that are performed aperiodically (such as process
malfunction or set parameter).

Subsystem controllers coordinate the computations performed by individual objects to yield
meaningful subsystem behavior. For example, a hydraulics subsystem controlier might coor-
dinate the computations of a reservoir object, a motor pump object, and a relief valve object in
such a way that, taken together, they yield the behavior of a hydraulics subsystem. Thus, the
behavior of an aircraft subsystem is simulated by simulating and coordinating the behaviors
of its components. This is different from the way simulators were designed in the past. In the
past, a subsystem was just a logical arrangement of modules. In the air vehicle structural mod-
el, the subsystem manifests itself as an arrangement of objects under the control of a sub-
system controller.

An Introduction to Structural Models

12

The kind of knowledge that a subsystem controller uses to coordinate the computations of its
objects is typically too sophisticated to be represented in a simpie table that captures the up-
date order for its objects. Depending on the mode of the simulator or malfunctions that are in
effect, a subsystem controller may use its objects in various ways to produce new values. For
example, updating a subsystem may involve updating the same object several times during a
single frame or not updating an object at all during certain frames. All subsystem controllers,
independent of the objects they coordinate, are consistently realized in software as Ada pack-
ages with private internal states and an identical set of procedures that operate on the control-
lers. Like operations on objects, operations on subsystem controllers are either periodic or
aperiodic.

Export areas communicate the results of one subsystem's computations with other sub-
systems. There is exactly one export area associated with each subsystem controller. What is
exported by one subsystem is determined by the needs of other subsystems. Since objects
are packaged to be independent of specific data sources and sinks, objects do not access ex-
port areas directly. Instead, subsystem controllers localize the knowledge of where to find in-
puts and where to place outputs for the subsystem. Inputs and outputs of objects are passed
by parameter; inputs and outputs of subsystems are held in export areas. All export areas are
consistently realized in software as simple Ada data packages.

Aperiodic coordination is effected by an event handler. The event handler detects and re-
sponds to events that originate outside the air vehicle, such as from the instructor/operator sta-
tion (I0S). Typical events include simulator mode changes such as freeze, run, re-initialize,
etc.; malfunction setting and clearing; and parameter setting or holding. An event queue is
used to notify the air vehicle that an event has occurred. The event handler does not respond
to events directly; instead, it simply dispatches the events to the subsystem controller(s) that
require notification. From there, the subsystem controller(s) forward the event to affected ob-
jects. Thus, an event handler's knowledge of events is limited to a mapping from a set of
events to a set of subsystem controllers to notify. This mapping is realized as a data structure
that may be read from disk during simulator initialization. The event handler is realized in soft-
ware as an Ada package.

Periodic activation is ettected by a mode sequencer. Just as subsystem controllers coordi-
nate the behavior of objects to yield subsystem behavior, the mode sequencer activates sub-
system controliers to yield overall simulator behavior in all required modes. The mode
sequencer’s visibility is limited to subsystem controllers; it is not aware of the specific objects
that comprise a subsystem. Each operational mode of the simulator—initialization, run, freeze,
reconfigure, etc.—can be described in terms of an ordered list of subsystem controllers and
operations (initialize, update, stabilize, etc.) to be performed on each. These lists are realized
as data structures that may be read from disk during simulator initialization. The mode se-
quencer can also provide time-consistent views of data to subsystems that require them by
calling operations that import subsystems while the simulation is quiescent. The mode se-
quencer is realized in software as an Ada package.

An Introduction to Structural Models

13

In a multiprocessor hardware configuration, each processor would contain the structural ele-
ments arranged as described above. That is, each processor wouid contain a number of sub-
systems (subsystem controllers, objects, and export areas), an event handler, and a mode
sequencer. Depending on the hardware configuration, communication between subsystems
on different processors can be accomplished in a variety of ways. For example, if processors
do not share memory but are connected by a network, data gathering and distribution sub-
systems can be implemented. If processors do share memory, it may be sufficient to locate all
or some export areas in memory shared between processors.

Although this description of the air vehicle structural model is necessarily incomplete, it shouid
be sufficient for the purposes of this paper. A thorough description will be provided in the forth-
coming guidebook on structural models.

3.3 Evaluation of the Air Vehicle Structural Model

We stated earlier that a system that will be built from a structural model can be evaluated with
respect to its ability to deliver functional requirements and intended qualities. Although a thor-
ough evaluation of a system built from the structural model described above is beyond the
scope of this paper, we will do two things in this section:

1. We will argue that the air vehicle structural model can be used to partition all
of the functionality within its scope (air vehicle simulation) and that the coor-
dination mechanisms are suitable for all modes of simuiator operation.

2. We will illustrate the effects of the partitioning strategy and coordination
mechanisms on achieving the intended qualities of modifiability and
scalability.

Any aircraft subsystem, independent of its detailed functionality, can be realized in simulation
as a subsystem controller with one or more objects and an export area. From one subsystem
to another, many things will vary. For example, the objects themselves and the exact manner
in which they are coordinated will vary from subsystem to subsystem. Yet this basic struc-
ture—a subsystem controller with one or more objects and an export area—will remain invari-
ant. Furthermore, this same basic structure also allows for the specification and
implementation of subsystems that are unique to the simulation rather than being derived from
the aircraft. In addition to data gatherers and distributors, this structure can be used to specify
subsystems like control loading, aural cue, equations of motion, and surrogates that allow for
partial device training.

The coordination mechanisms are sufficient to handle all modes of simulator operation and all
events from external sources.

* The mode sequencer and its companion set of mode-specific ordered lists
allow subsystems to be updated at different rates. By calling the subsystem's
import pracedure while the simulation is quiescent, the mode sequencer can
frame data for subsystems that require a time-consistent view of inputs.

An introduction to Structural Models

14

#

* The event handler is a sufficiently robust mechanism for mapping events to
subsystems. Such events include malfunction setting and clearing,
parameter sets and holds, and simulator mode changes. Subsystem
controllers then map the events to the appropriate subsystem objects.

» The subsystems and objects themselves are able to implement ali simulator
modes and respond to ali external events.

* Export areas are a sufficiently robust communication mechanism for
communication between subsystems on one processor, subsystems on
separate processors, and other external simulator systems such as the 10S,
visual, and motion systems.

Modifiability and scalability are both positively affected by the partitioning strategy and the co-
ordination and communication mechanisms. Characteristics of the structural model that con-
tribute to modifiability and scalability include:

* Traceability between aircraft subsystems and simulation subsystems.
» Separation of computation from coordination.
¢ Localization of knowledge.

There is a well-defined locus of change for subsystems and objects that simulate aircraft sub-
systems and components. When an aircraft component is changed, the change is traced to
the subsystem in which the component is simulated and its corresponding object is changed.
As long as the interface to the subsystem (inputs from other subsystems and outputs to other
subsystems) stays the same, the change is localized within the subsystem (subsystem con-
troller and/or one or more objects). Even if the interface does change, the effects of the change
to the aircraft subsystem can be traced by tracing the effects of the change to the interface.
Thus, the partitioning strategy leads to the same kind of cohesiveness between software com-
ponents as that shared by the physical aircraft components.

The separation of computation from coordination, a consequence of encapsulating models in
objects, limits the number of assumptions that modelers can easily make, thereby reducing
unnecessary dependencies between subsystems. Where temporal dependencies do exist,
they can be resolved by exercising the mode sequencer’s ability to frame data for a sub-
system. The net effect is a reduction in temporal dependencies between subsystems that
leads to simpler integration and greater scalability.

Another key contributor to modifiability and scalability is the localization of knowledge that
comes from the partitioning strategy. Functional requirements for capabilities like reconfigura-
tion, initialization, etc., are allocated to each subsystem rather than to individual entities. Thus,
every subsystem localizes knowledge about how to initialize itself, how to update itself, what
it means to reconfigure, how to stabilize computations following a reconfiguration, what mal-
functions are simulated and how they are simulated, etc. This consistent localization provides
mechanisms for coordinating the behavior of subsystems across simulator modes (ordered
lists, event mappings) and simplifies the addition of new subsystems. Furthermore, localiza-

An Introduction to Structural Models
15

tion leads to well-bounded subsystems that provide an eftective unit of distribution when bal-
ancing loads across processors. All of this contributes to scalability and modifiability.

3.4 Application of the Air Vehicle Structural Model

Again, the goal in applying a structural model on a project is to see that the many decisions
reflected in the structural model are adhered to consistently. There are two aspects to this con-
sistency:

1. Consistent transformations between the specification of subsystem control-
lers, objects, export areas, etc., and the implementation of the specified ele-
ments.

2. Consistent use of the structural elements to fashion simulation models.

As described in Section 2.4, consistent transformations can be accomplished by using speci-
fication forms and code templates. Specification forms allow simulation analysts to specify an
arrangement of structural elements (subsystem controller, objects, and export area) for simu-
lating particular subsystems, as well as details about what each of the elements contributes,
what malfunctions are simulated, how the subsystems behave in different simulator modes,
etc. Code templates allow the consistent realization of the structural elements specified on
specification forms. Thus, there are code templates for subsystem controllers, objects, and ex-
port areas. Every instance of an object on a specification form, for example. eventually leads
to instantiation of the code template for objects.

The consistent use of the structural elements to fashion simulation models will be more diffi-
cult, at least until simulation analysts acquire experience with the structural model. The struc-
tural model prescribes that an aircraft subsystem be simulated by simulating and coordinating
the behavior of its component parts. In many cases, this is very different from what simulation
analysts are accustomed to. Through years of conditioning and experience with the traditional
software design for simulation, simulation analysts have become accustomed to viewing sim-
ulation problems functionally. Faithful application of a new structural model invoives more than
taking the old functions, placing them in object packages, and mechanically caliing the “objec-
tified” functions in order. It involves a thorough understanding of the role of the structural ele-
ments and the quality goals they are intended to support.

Specification and implementation of exemplary subsystems is one way of helping to reestab-
lish the experience base. Exemplary subsystems (or exemplars, for short) are an effective
means of demonstrating the intent and benefits of a structural model to simulation analysts.
To the extent that exemplary subsystems are representative (functionally) of the subsystems
that analysts must simulate, exemplars provide effective guidance by way of analogy.

Lack of experience with the structural model also erodes the basis for predicting both human
and computer resources. incremental development is one method of restoring the predictive
basis. In incremental development, the engineer builds a subset of the subsystems to be sim-
ulated, then repeats the process for remaining increments. The consistent and repeated ap-

An Introduction to Structural Models

16

plication of a small number of structural elements for specifying and implementing subsystem
simulations allows the experience gained from the first increment to be applied to subsequent
increments. The results of each increment are run on the target computer, allowing early and
ongoing insight into the use of computer resources. This process is largely independent of the
particular subsystems built in each increment.

3.5 Summary

Modern-day intended qualities for flight simulators led to the development of an air vehicle
structural model that emphasizes modifiability and scalability in addition to efficiency. This
structural model is a product of an object-oriented pantitioning strategy in which the software
structure is based on aircraft subsystems and components rather than on functional require-
ments. Functional requirements for all simulator modes (initialization, run, freeze, etc.) are par-
titioned to each subsystem. Partitioning to subsystems localizes the effects of changes to
software in response to changes in the aircraft and establishes the subsystem as an effective
unit of distribution for balancing loads across processors. These characteristics contribute to
satisfying the goals of modifiability and scalability.

The structural elements provided by the structural model (subsystem controller, objects, ex-
port areas, etc.) are sufficient for implementing all functionality within its scope. The coordina-
tion mechanisms are sufficient for implementing all required operational modes of the
simulator, for coordinating computations distributed over several processors, and for coordi-
nating interactions with other simulator systems outside of the air vehicle simulation (10S, vi-
sual system, motion system, etc.).

The air vehicle structural model implies more than a new way of implementing old functionality.
The structural elements impose a view of simulation that is different from the functional view
imposed by the traditional software design for flight simulators. Thus, the air vehicle structural
model implies not only a new way of packaging simulation models; it also implies a new way
of thinking about simulation models that is driven by the goals of modifiability and scalability.

Initially, lack of experience with a structural model will inhibit its consistent, efficient, and pre-
dictive application. As the structural model is applied from project to project, an experience
base will gradually be rebuilt. First-time users of the structural model can manage the change
by developing (or borrowing) exemplary subsystems to serve as examples for simulation an-
alysts and by developing a large simulator in small, well-planned increments. It is important for
first-time users to realize that development (and acquisition) practices predicated on traditional
designs are probably inappropriate in this context.

An Introduction to Structural Models

17

' .

4 Structural Models in Proposals

Developing a structural model is an integral part of system engineering Once deveioped, a
structural model allows system design decisions to be applied consistently, efficiently, and pre-
dictively throughout the development process. Applying a structural model on a flight simulator
project involves repeated use of a set of structural elements to specify and implement simula-
tions of individual aircraft subsystems. Thus, a structural model can be evaluated early in the
development process, independent of the particular subsystems it will be used to implement.
The evaluation includes an assessment of the proposed system’s ability to provide required
functionality and to deliver the qualities that it is intended to deliver.

A proposal to use structural models should communicate all that the bidder knows about the
structural model(s) the bidder intends to use. ASC/YT assumes that, as the community be-
comes more familiar with structural models, the community will be able to provide more infor-
mation in proposals. In the meantime, it is sufficient to establish certain system engineering
goals and to identify when in the development process those goals will be satisfied.

Program specific details of what ASC/YT expects to see in a proposal will be addressed in the
Instructions to Offerer (ITO). In general,a complete proposal should:

1. Describe the structural modei(s) to be used by the project.

2. Demonstrate that the proposed structural model is complete with respect to
required functionality and will deliver the intended qualities.

3. Describe how the structural model(s) will be applied consistently on the
project.

In the remaining sections, we elaborate on ASC/YT expectations in each of these areas. For
each, we first describe what a bidder who has extensive experience with structural models is
likely to provide in a proposal. We then describe the minimum amount of information that could
be provided by new users of structural models.

4.1 Description of a Particular Structural Model

A description of a structural model for flight simulators should begin with a statement of the
scope of the structural model and a description of the intended qualities that drove the tradeoft
decisions that were made when the structural model was formulated. For example, the scope
of the structural modei discussed in Chapter 3 is the air vehicle system, and the intended quai-
ities are modifiability of the air vehicle and scalability. Other examples of the scope of a struc-
tural model include the IOS, the threat environment, and mission planning. Each example
might have its own set of qualities that led to the particular model. The relative importance of
the qualities should also be indicated.

The description should next identify the partitioning strategy. The partitioning strategy de-
scribed in Chapter 3 is object-oriented decomposition. The intended resuits of the partitioning

An Introduction to Structural Models
18

strategy should be established by exampie; the examples should demonstrate what is meant
by the terminology used to describe the partitioning strategy. For the structural model dis-
cussed in Chapter 3, one might list typical subsystems and indicate what objects will be sim-
ulated. Without such examples, the intent of the partitioning strategy is difficult to determine.

A description of a structural mode! should include both a static and a dynamic description of
the eiements of the structural model. The static description should explain both the role and
the form of each element. For example, the role of the object element discussed in Chapter 3
is to encapsulate computations that simulate the behavior of an aircraft component. The form
of the element might be an Ada package with private internal state data and procedures that
operate on the object. The dynamic description should show how the elements are coordinat-
ed to provide system behavior and how the elements communicate with one another. This can
be done with a set of thread diagrams showing how the elements interact in importani system
modes (run, freeze, etc.). Another set of thread diagrams inight show how events are triggered
and reacted to.

Hardware is an integral concern of the system engineering team. The structura’ model is pred-
icated on assumptions about the computing platform. This is particularly true tor coordination
among elements on different processors or clusters of processors. These assumptions should
be made explicit in the description of the structural model.

At a minimum, a proposal shouid identify all structural models by indicating their scope. Any
proposal that doesn't provide full descriptions should establish the provision and review of full
descriptions as an early milestone.

4.2 Evaluation of a Structural Model

A structural model can be evaluated in terms ot its completeness and the qualities it is intend-
ed to deliver. A structural model is complete if it can be used to partition all required function-
ality within its scope, and if it can provide the mechanisms of coordination and communication
required in all modes of system operation. One way to demonstrate that the structural model
can be used to partition and coordinate all required functionality is by example. For ar object-
oriented structural model, subsystems such as fuel, hydraulics, electric, and pneumatic
present similar partitioning problems: ail involve objects that distribute loads through networks.
Another group of subsystems—the radios, radars, and other transmitters and receivers—is
also similar with respect to partitioning and coordination problems. In these cases, partitioning
and coordination solutions for one subsystem in the group indicate the ability to solve these
problems for all subsystems in the group. Thus, this form of completeness can be demonstrat-
ed by an adequate set of partitioning and coordination examples.

Completeness with respect to coordination can be demonstrated by describing dynamic
threads. For example, in run mode, it might be necessary to coordinate communications be-
tween subsystems running at different rates. After a reposition, it might be necessary for sub-
systems to stabilize their computations. Thread diagrams also should be provided for all

An Introduction to Structural Modeis
19

_

significant events, such as malfunction setting and clearing, parameter sets and holds, and
simulator mode changes.

A structural model is designed to satisty certain quality goals implicit or explicit in the request
for proposals (RFP). For example, if the RFP emphasizes modifiability, the bidder should nro-
pose indicators of modifiability (for example, the ability to respond to a component upgrade or
the addition of a new radar set). The bidder then should describe the required modifications
to the software in terms of the structural elements involved.

At a minimum, bidders should list both the completeness criteria and the quality criteria sup-
ported by each structural model. If the bidder has not proposed a4 comp!ete description of a
structural model, it will not be possible to demonstrate that the structural model meets the cri-
teria or satisfies the goals. However, the proposal can commit the bidder to demonstrate that
the criteria have been satisfied when the promised structural modet is reviewed.

4.3 Application of a Structural Model

The most critical aspect of the application of structural models is its relationship to system en-
gineering. Creation and development of the structural model is the responsibility of the system
engineering team. The proposal should establish that a system engineering team will assume
responsibility for the structural model at the start of the program and maintain responsibility for
the structural model throughout the project.

Consistent, efficient, and predictable use of a structural model requires a development ap-
proach that proceeds in concert with the development of the structural model. A proposal to
use structural models should address the following aspects of its application:

e Staffing plan and work breakdown structure.

* Resource estimation and traceability.

* Prototyping, incremental development, and integration.
® Tools and notations

* Documentation

Both the proposed statfing plan and work breakdown structure should reflect the evolution and
application of the proposed structural models. For example, one cannot begin analysis of de-
tailed functionality until the partitioning strategy has been well established and realized in a
structural model and until exemplary subsystems are available for training analysts. Since
work breakdown structures reflect the partitioning of the personnel and the allocation ¢f func-
tionality to work teams. they must be consistent with the partitioning and coordination strategy
of the structural model. This means that work breakdown structures based on experience with
traditional designs are not necessarily approoriate for structural models derived from an
object-oriented partitioning strategy.

An Introduction to Structural Models
20

A proposal should justify software and hardware costs in terms of the structural model. All lines
of code are not equal. Coordination runtime costs vary from structural model to structural mod-
el. Development costs vary according to familiarity with the partitioning strategy and experi-
ence applying the structural model.

A proposal shoulid indicate how structural models will be used to take advantage of the bene-
fits of prototyping and how they will be used to facilitate migration from prototype to integration
in well-planned increments of development. The commitment to specify and implement ali par-
titions using a single set of structural elements facilitates early generation of a prototype com-
plete with realistic synthetic loads. The prototype can be used first to resolve basic issues of
hardware/software integration and to refine estimates of runtime resources. As development
proceeds incrementally, synthetic loads can be replaced by actual code, code which can be
integrated with code already in place. Increments can be planned with risk management in
mind. Early increments might be made up of exemplary subsystems. Subsequent increments
might include subsystems with widespread impact on other subsystems or subsystems for
which estimates are most uncertain.

Any proposed use of tools and notations should be consistent with structural models in gen-
eral. Some structural models allow a straightforward mapping between design and implemen-
tation. As described in Chapter 3.4, specification forms and code templates are ways of
establishing this mapping. Proposals should focus on tools that facilitate form entry and map-
ping from specification to templates (or their equivalent). Tools that require muitiple represen-
tations of the same information should be avoided.

A proposal should indicate how the structural model will be efficiently documented. For exam-
ple, a simulator built using the structural model discussed in Chapter 3 might have 300 sub-
systems, each with an export area and a controller. Since each subsystem coordinates its
objects and communicates results of computations in the same general manner, such design
information need not be repeated 300 times. Instead, the documentation of each controller and
of each export area can refer to a reterence description of the structural model for the common
attributes of each subsystem.

At a minimum, bidders should propose the central role of a system engineering team in the
development and application of structural models. They should delineate the aspects of the
development process that will reflect consistent, efficient, and predictable use of structural
models, and commit to resolution of details early in the development process.

An Introduction to Structural Models
21

4.4 Summary

Structural models allow early analysis of the viability of a proposed software design. Structural
models can be used to help ensure that system requirements, both functional requirements
and quality goals, are met consistently, efficiently, and predictively. Thus, information on struc-
tural models is vital in assessing the technical quality of a proposed solution.

ASC/YT understands that during the maturation process, it will be difficult for bidders to pro-
vide complete information about structural models and their use in proposals. However,
ASC/YT does expect that bidders wili treat structural models as more than another software
engineering buzzword to be mentioned in passing. Even bidders who have had no experience
with structural models can demonstrate their understanding by including the minimal informa-
tion identified above.

An Introduction to Structural Models

22

Appendix A Glossary

Activation - The mechanisms by which the structural elements are made to cooperate to re-
alize overall system functionality.

Aperiodic - Not occurring according to a regular schedule; opposite of periodic.

Code template - A template used to ensure the use of consistent coordination mechanisms.
Code templates map directly to specitication forms.

Communication - The paths and mechanisms by which structural elements share the results
of their computations.

Completeness - The ability of a structural model to partition all required functionality within its
scope and provide the mechanisms of coordination required in ail modes of system operation.

Computation - Using available computing resources to achieve some purpose; in the case of
flight simulators, the purpose of computation is to simulate the behavior of a real-world air ve-
hicle’s components.

Coordination - Activation and communication.

Efficiency - The extent to which software performs its intended functions with a minimum con-
sumption of computing resources.

Event handler - Structural element that detects and responds to aperiodic events that origi-
nate outside the air vehicle, such as from the instructor/operator station (I0S). Typical events
include simulator mode changes such as freeze, run, re-initialize, etc.; malfunction setting and
clearing; and parameter setting or holding.

Exemplars - Model solutions for particular structural elements that demonstrate to simulation
analysts the intent and benefits of a structural model. To the extent that they are representa-
tive (functionally) of the subsystems that analysts must simulate, exemplars provide effective
guidance by way of analogy.

Export area - Structural element whose purpose is to provide a place for a subsystem con-
troller to keep its outputs, so that these outputs are accessible by other subsystems and ele-
ments. There is exactly one export area associated with each subsystem controller.

Fidelity - The faithfulness of a simulation to the real-world situation being simulated.

Flight simulator - A device that trains pilots and crew members to control the behavior of an
aircraft under a variety of circumstances.

Incremental development - A technique that emphasizes the overlapping, iterative develop-
ment of design and implementation.

An Introduction to Structural Models
23

ﬁj

Intended quaiitles - Qualities, such as modifiability, that are not part of a system’s function-
ality but that are important to the system. A few dominant intended qualities tend to guide de-
cision making in the design of large software systems.

Mode sequencer - Structural element that effects periodic coordination. The mode sequencer
coordinates subsystem controllers to yield overall simulator behavior in all required modes.

Modifiability - The ability to change software components in a simulation easily.
Object - An encapsulation of data and the services that manipulate that data.

Object-oriented - Partitioning strategy in which objects are based on real-world components
and provide operations, or methods, for providing services.

Partitioning - The decomposition of large software problems into smaller subproblems and
the allocation of these subproblems to software components that will sclve them.

Perlodic - Occurring according to a regular schedule.
Scalability - The ability of a software system to accommodate changes in scale.

Simulator mode - The task with which the simuiator is currently concerned. Example modes
include run mode (performing normal operation), malfunction mode (performing in response
to a malfunction), or replay mode (replaying the actions of a simulation).

Specification form - A form used by simulation analysts to specify how individual subsystems
will be simulated. A specification form constrains the simulation analyst to express solutions
to simulation problems in terms of the structural elements and coordination mechanisms con-
tained in the structural model.

Structural element - Software component that embodies decisions about coordination.

Structural model - A pattern for specifying and implementing software system functionality.
it reflects system engineering decisions about partitioning and coordination. A structural model
allows critical decisions about system design to be evaluated early in development and allows
the decisions to be applied consistently across the entire software system.

Subsystem controller - Structural element whose job is to coordinate the computations per-
formed by individual objects to yield meaningful subsystem pehavior.

System - A collection of subsystems organized to accomplish a specific function or set of func-
tions.

An Introduction to Structural Models
24

